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For arbitrary Banach spaces Butzer and Scherer in 1968 showed that the
approximation order of best approximation can characterized by the order of
certain K-functionals. This general theorem has many applications such as the
characterization of the best approximation of algebraic polynomials by moduli of
smoothness involving the Legendre, Chebyshev, or more general the Jacobi trans-
form. In this paper we introduce a family of seminorms on the underlying
approximation space which leads to a generalization of the Butzer�Scherer
theorems. Now the characterization of the weighted best algebraic approximation
in terms of the so-called main part modulus of Ditzian and Totik is included in our
frame as another particular application. The goal of the paper is to show that for
the characterization of the orders of best approximation, simultaneous approxima-
tion (in different spaces), reduction theorems, and K-functionals one has (essen-
tially) only to verify three types of inequalities, namely inequalities of Jackson-,
Bernstein-type and an equivalence condition which guarantees the equivalence of
the seminorm and the underlying norm on certain subspaces. All the results are
given in weak-type estimates for almost arbitrary approximation orders, the proofs
use only functional analytic methods. � 1999 Academic Press

Key Words: best approximation; simultaneous approximation; K-functionals;
rate of convergence; best weighted algebraic approximation.

1. INTRODUCTION

Denoting by En ( f ; C2?) :=inftn # 6n
& f&tn &C2?

the (error of the) best
approximation of a 2?-periodic continuous function f # C2? by the space
6n of trigonometric polynomials of degree not exceeding n # N, the classi-
cal theorem of K. Weierstrass (1885) states that limn � � En ( f ; C2?)=0. In
1908 C. de la Valle� e Poussin proposed the problem of characterizing of the
rate of convergence of the best approximation. This was solved by the
famous direct theorem of D. Jackson (1911) and the inverse theorem of
S. N. Bernstein (1911�1922). The behaviour of En ( f ; C2?) depends heavily
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on the smoothness properties of the given function f, which can be
measured by the so called r th modulus of smoothness |r ( f, t; C2?) :=
sup0�|h| �t &2r

h f &C2?
, where 2 r

h denotes the rth usual difference operator
with increment h # R. Then the following theorem holds:

Theorem 1.1. For f # C2? and s<_<r, s, r # N0 , the following five
assertions are equivalent :

(i) En ( f ; C2?)=O(n&_), n � �;

(ii) |r ( f, t; C2?)=O(t_), t � 0+;

(iii) f # C s
2? and En ( f (s); C2?)=O(ns&_), n � �;

(iv) f # C s
2? and {|1 ( f (s), t; C2?)=O(t_&s), t � 0+, 0<_&s<1

|2 ( f (s), t; C2?)=O(t_&s), t � 0+, 0<_&s<2;

(v) &(tn%)(r)&C2?
=O(nr&_), n � �.

Above, C s
2? denotes the space of all s times continuously differentiable

2?-periodic functions and tn% # 6n the polynomial of best approximation
of f. The implication (i) to (iv) is due to D. Jackson [15, Abschnitt I.4];
(for r=1), its converse was proved by S. N. Bernstein [2, 56. The� ore� me].
Concerning the second order modulus, this part was established by
A. Zygmund [33], where one can find a partial proof of the the equiv-
alence of (ii) and (iv). M. Zamansky [32, p. 26] showed that the assump-
tion & f&tn &C2?

=O(n&_) implies &t (r)
n &C2?

=O(nr&_), which readily yields
(v) from (i). In the fundamental paper [28] of S. B. Stec� kin it was shown
that the same assumption already ensures the existence of f (s), and
& f (s)&t (s)

n &C2?
=O(ns&_). An application of the Bernstein theorem to f (s)

delivers (iv) from (iii). Finally, the implication from (v) to (ii) goes back
to G. Sunouchi [29, 30]. All these five equivalences in connection are first
appeared in P. L. Butzer and K. Scherer [7, 8] (see also P. L. Butzer and
S. Pawelke [6] for L2

2?), where it was pointed out that the proof of the
theorem above follows essentially from the validity of two fundamental
inequalities, namely the so-called Jackson inequality [15, Satz II],

En ( f ; C2?)�Mn&r & f (r)&C2?
, f # C r

2? , (J)

and the Bernstein inequality [2, Sect. 12],

&t (r)
n &C2?

�nr &tn&C2?
, tn # 6n . (B)

Theorem 1.1 does not only hold for continuous functions; the assertions
remain valid if one considers 2?-periodic Lebesgue integrable functions
f # L p

2? as well. Furthermore, in their papers [7, 8] Butzer and Scherer
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showed that the equivalence theorem even holds in arbitrary Banach
spaces X provided that, apart from some natural assumptions, suitable
generalizations of the Jackson and Bernstein inequalities are given. To this
end the set 6n of trigonometric polynomials has to be replaced by a family
S=[St]t # (0, 1] of nested linear subspaces of X, i.e., Sh /St , 0<t�h�1,
which play the role of approximands. Thus, in this frame the best
approximation for f # X is defined by Et ( f ; X ) :=infgt # St

& f& gt &X . The
modulus of smoothness makes no longer sense in arbitrary spaces,
a substitute is given by the (Peetre) K-functional K( f, tr; X, Y ) :=
infg # Y [& f& g&X+tr | g| Y], Y/X denoting a linear subspace with semi-
norm | } |Y . Assuming now that there hold (essentially) as modifications of
(J) and (B) the Jackson inequality

Et ( f ; X )�Mtr | f |Y , f # Y, (JX)

as well as the Bernstein inequality

| gt|Y�Mt&r &gt&X , gt # St , (BX)

then there follows for f # X and _<r the equivalence of

Et ( f ; X )=O(t_), t � 0+;

K( f, tr; X, Y )=O(t_), t � 0+.

This is the counterpart of (i) and (ii) in Theorem 1.1, and has many
applications in various specific Banach spaces X. In particular, choosing
X:=C2? , Y :=C r

2? , and St :=6[1�t]&1 , then on noting that K( f, tr; C2? , C r
2?)

t|r ( f, t; C2?), the equivalence of (i) and (ii) follows from the equivalence
above.

Unfortunately, the general theorems of Butzer�Scherer do not apply to
the important case of weighted algebraic approximation by algebraic poly-
nomials in connection with the powerful Ditzian�Totik moduli of smooth-
ness, the usefulness of which is pointed out in their monograph [13]. The
main difficulty concerning algebraic approximation is the fact that the
accuracy of the best approximation by algebraic polynomials behaves not
uniformly over the interval, say [0, 1], it becomes better towards the
endpoints 0, 1 of [0, 1], instead. This observation already due to
S. M. Nikolski@$ [25] and has to be taken in consideration to define a
suitable modulus of smoothness. To establish a characterization of the best
algebraic approximation En ( f, L p

+) :=infpn # Pn
& f& pn &p, + of an element f

belonging to the weighted Lebesgue spaces L p
+ (for definitions and ranges

of the parameters see Section 7 below), Ditzian and Totik replaced the
usual difference 2h f (x) by 2h.(x) f (x) :=f (x+h.(x)�2)& f (x&h.(x)�2),
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.(x) :=- x(1&x). The increment h.(x) decreases towards the endpoints
of [0, 1], the function may be of lesser smoothness there. Furthermore the
norm is taken only over a subinterval [2r2h2, 1&2r2h2] of [0, 1], which
forms a exhaustion of [0, 1] for the limit h � 0+. This leads to the defini-
tion of the rth main part modulus of Ditzian and Totik, namely

0r, + ( f, t) := sup
0<h�t

|2r
h.( } ) f ( } )|p, +, h ,

where | f |p, +, h :=& f.+&L p(2r2h2, 1&2r2h2) . Then the following theorem holds
(cf. Z. Ditzian and V. Totik [13, Theorem 8.2.1.]):

Theorem 1.2. For f # L p
+ and r # N, t # (0, 1] there holds

En ( f ; L p
+)�M |

1�n

0
0r, + ( f, u)

du
u

,

and

0r, + ( f, t)�Mtr :
0�k�1�t

(k+1)r&1 Ek ( f ; L p
+).

Both estimates are called weak type inequalities, since the right hand
terms are means of integrals and harmonic sums of the best approximation
and main part modulus, respectively. The constants M>0 above are inde-
pendent of f, therefore weak type inequalities are stronger than the corre-
sponding O-assertions in Theorem 1.1 where the constants involved by the
Landau symbol O may depend of f.

The main part modulus is no longer equivalent to a K-functional in the
classical sense, in order to find a functional analytic approach of
approximation theorems such that the algebraic approximation applies as
well, we have to modify the general setup in Banach spaces. The first obser-
vation in this direction is that | } |p, +, t defines a family of seminorms on L p

+

which converges for t � 0+ towards the norm & }&p, + . In particular | f |p, +, t

decreases in t, and | f |p, +, t=0 for all 0<t<1�(2r) implies f =0 a.e. Now,
in Banach spaces X we do not only consider a norm & }&X on X, addi-
tionally we introduce a family [ | } |X, t ; t # (0, 1]] of seminorms, which has
the exhaustion property, i.e., we have monotonicity

| f |X, h�| f |X, t�M & f &X , f # X, 0<t�h�1,

and

if f # X such that | f | X, t=0 for all 0<t�1, then f =0.
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FIG. 1. Seminorms converging to the norm.

This exhaustion property immediately implies

if lim
t � 0+

| f |X, t=0 then & f &X=0.

In this sense the one can say that the seminorms converge towards the
norm (Fig. 1), see also [4]. Another motivation for introducing the semi-
norms is the fact that the exhaustion property can be used to weaken the
Jackson inequality, whose verification is in fact usually the most difficult
part in applications. To this end the parameters t of the seminorms and of
the approximands St will be linked in the definition of the best modified
approximation, namely

Et*( f ; X ) := inf
gt # St

| f &gt |X, t .

In order to characterize the best approximation Et ( f ; X ) in terms of its
modified counterpart Et*( f ; X ), we need to control the norm by the semi-
norms. Thus we have to claim the equivalence condition

&gt&X�M | gt|X, t�C* , gt # St , (Eq)

for a constant C* # (0, 1). This assumption implies

&gt&X t | gt |X, t , gt # St ,

i.e., the seminorms and the norm are equivalent on the subspaces St . It will
be shown that under the claim above it is sufficient to verify the weak
Jackson inequality

Et*( f ; X )�M�(t) | f | Y , f # Y, (J*X )

instead of (JX ). � denotes an order function like �(t)=tr. In the par-
ticular application of weighted algebraic approximation by verification of
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(J*X ) we can avoid estimates at the endpoints of the underlying interval,
which would cause difficulties, since the function . vanishes in 0, 1. The
main goal in introducing the seminorms is the fact that we are now in posi-
tion to define a modified K-functional, which is equivalent to the main part
modulus 0r, + in that specific example. This K*-functional is given by

K*( f, �(t); X, Y ) := sup
0<h�t

inf
g # Y

[ | f &g|X, h+�(h) | g|Y],

where the parameter of the order function � is also linked with the semi-
norms.

A Banach space X endowed with a family of seminorms [ | } |X, t ; t # (0, 1]],
which satisfies the exhaustion property and the equivalence condition (Eq),
is said to be an approximation space (A-space), provided for all f # X that
the best approximation Et ( f ; X ) vanishes for t � 0+, cf. Definition 3.1.
Furthermore, a linear subspace Y/X is called a subspace of order �, iff
there hold the weak Jackson inequality (J*X ) and the and the Bernstein
inequality

| gt|Y�M
1

�(t)
&gt&X , gt # St . (B*X )

In A-space we can prove among others the following direct and inverse
estimates

Et ( f ; X )�MK( f, �(t); X, Y ),

Et ( f ; X )�M |
t

0
K*( f, �(u); X, Y )

du
u

,

K( f, �(t); X, Y )�M�(t) {& f &X+ :
1�k�1�t

1
k�(k&1)

E1�k ( f )= .

Concerning simultaneous approximation and reduction theorems, i.e.,
theorems involving assertions of types (iii) and (iv) in Theorem 1.1, in the
case of weighted algebraic approximation (in opposite of the trigonometric
case) the problem arises that the derivative f (r) of a function f # L p

+ usually
belongs to the different space L p

++r , instead of L p
+ . Since the differentiation

operator maps into a different space, in our setting we have to consider
another A-space X� , such that in the application mentioned, the spaces X
and X� can be identified with L p

+ and L p
++r , respectively. Note that X�

denotes another A-space and not the closure of X. The generalization of the
derivative will be realized by a closed operator

D: XD � X� ,
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satisfying St /XD /X, D(St)=S� t , and

1
M

| f |XD
�&Df &X� �M | f |XD

, f # XD ,

S� t denoting the approximands of X� . If XD forms a subspace of order �D ,
then D is called an abstract derivative of the order �D . On using this
terminology, we can prove weak type inequalities between the best
approximation and K-functionals (of derivatives). This leads to new
estimates in the Ditzian�Totik frame as well. For convenience and in con-
trast to Theorem 1.1, we summarize the results of the following sections (all
established as weak type estimates) in terms of O assertions.

Corollary 1.3. Let X, X� A-spaces, Y/X, Y� /X� be subspaces of order
�, �� O1, respectively, and D: XD � X� an abstract derivative of order
�D O1. Then for f # X and , # 8, satisfying �O,O�D , ,o�� �D , the
following six assertions are equivalent:

(i) Et ( f ; X )=O(,(t)), t � 0+;

(ii) K( f, �(t); X, Y )=O(,(t)), t � 0+;

(ii)* K*( f, �(t); X, Y )=O(,(t)), t � 0+;

(iii) Df # X� and Et (Df ; X� )=O \ ,(t)
�D(t)+ , t � 0+;

(iv) Df # X� and K(Df, �� (t); X� , Y� )=O \ ,(t)
�D(t)+ , t � 0+;

(iv)* Df # X� and K*(Df, �� (t); X� , Y� )=O \ ,(t)
�D(t)+ , t � 0+.

Above, O denotes an order relation (cf. Definition 2.3) for O-regularly
varying functions, introduced in [16, 17]. This relation provides an easy
tool in comparison the growth of functions like ,(t)=t_ |log t| &. The main
facts of this relation and the underlying function classes are collected in the
next section.

In Sections 3�5 we want to establish��in extension of the Butzer�Scherer
approach��the direct and inverse theorems, theorems concerning the
simultaneous approximation, as well as reduction theorems in arbitrary
A-spaces. In the last two sections, we wish to apply this theorems for the
particular cases of trigonometric and algebraic approximation. The aim of
this paper is to show on using functional analytic methods, i.e., on using
soft analysis, that for the characterization of the best approximation
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Et ( f ; X ) one has (essentially) only to verify three types of inequalities,
namely the equivalence condition (Eq), the Jackson, and the Bernstein
inequality (J*X ), (B*X ). These estimates have to shown under the use of the
underlying (hard) analysis or the particular applications.

Beside the classical applications of the Butzer�Scherer theorems, our
approach by including the exhaustion method by seminorms, covers also
many results in the weighted and non-weighted Ditzian�Totik setting
(cf. [13, Chaps. 6�8]), and delivers new results for simultaneous approxi-
mation and reduction theorems. Further applications will be considered in
a forthcoming paper.

2. ORDER FUNCTIONS

The approximation behaviour of the best approximation or the order of
Jackson or Bernstein inequalities are described by order functions such as
power functions ,(t)=t_, for instance. In this section we generalize the
admissible order functions used in approximation theorems to an Abelian
group of functions 8, and we introduce a relation O in 8 which gives an
easy tool to compare the different orders of elements of 8. Several attempts
to extend power functions can be found in papers on approximation
theory, see e.g., P. L. Butzer and K. Scherer [9], P. L. Butzer et al. [4],
Z. Ditzian and X. Zhou [14] as well as in S. Jansche and R. L. Stens [18]
and E. van Wickeren [31]. A rigorous application of the theory of
regularly varying functions seems to have been first carried out in [17],
and in [16], where one finds a detailed elaboration and proofs of
the material of this section. The textbooks of E. Seneta [27] and
N. H. Bingham, et al. [3] provide a systematic treatment of the theory of
regularly varying functions.

We make use of the Landau symbol in the common way, and write ftg
if f =O(g) and g=O( f ). Furthermore, we will not distinguish the con-
stants in various estimates; the value of a constant M>0 may differ in each
occurrence of a chain of inequalities, but always independent of the varying
parameters. If necessary, we indicate dependencies by M(C) etc. The class
of order functions is given by the following definition:

Definition 2.1. A positive (Lebesgue-) measurable function ,: (0, 1] � R
is said to be a O-regularly varying function (O-RV function), or order func-
tion, for short, if for each t0 # (0, 1)

,t1 on [t0 , 1], (2.1)
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and if

0<lim inf
t � 0+

,(Ct)
,(t)

, lim sup
t � 0+

,(Ct)
,(t)

<� (2.2)

for all C # (0, 1]. The class of all order functions is denoted by 8.

The above definition can be found in S. Aljanc� ic� and D. Arandelovic�
[1], except that the limit t � � is considered instead of t � 0+ here.
A typical example of an order function is given by

,(t) :=t_ |log t|\, t # (0, 1�2]; ,(t) :=1, t # (1�2, 1],

_, \ being arbitrary real numbers. Note that functions having exponential
growth like ,(t) :=e&1�t do not belong to 8. It is convenient to define
,*, ,

*
: (0, 1] � R

,*(C) :=lim sup
t � 0+

,(Ct)
,(t)

, ,
*

(C) :=lim inf
t � 0+

,(Ct)
,(t)

.

Now we collect some properties of order functions, which can be found
in [17].

Proposition 2.1. If , # 8, then for all C # (0, 1) we have

,*t1, ,
*

t1 on [C, 1].

In particular, there exists a constant M=M(C)>0 such that

1
M

,(t)�,(h)�M,(t) (2.3)

for all C�h�t�1, h, t # (0, 1].

Concerning weak type inequalities, functions are often estimated by cer-
tain means of harmonic or geometric sums or by integrals. If the underly-
ing functions belong to 8, one can switch between these types of estimates,
as the following lemma shows.

Lemma 2.2. Let , # 8 and C # (0, 1); then for t # (0, 1) we have

|
t

0
,(u)

du
u

t :
k�1�t

1
k

,(k&1)t :
�

j=0

,(C jt), (2.4)

|
1

t
,(u)

du
u

t :
1�k�1�t

1
k

,(k&1)t :
j; t�Cj�1

,(C j ), (2.5)
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provided that the integral exists or one of the series converges. The constants
induced by t depend on C.

Remark 2.2. In particular, if a family [,*]* # 4 /8, 4 an arbitrary
index set, satisfies

1
M

,* (t)�,* (h)�M,* (t)

for all * # 4 and h, t # (0, 1], C�t�h�1, then the estimates (2.4) and (2.5)
hold uniformly in * # 4.

If /: (0, 1] � R is just a non-negative almost increasing function, and
, # 8, then for C # (0, 1) there exists a M=M(C)>0 such that

:
�

j=0

/(C jt)
,(C jt)

�M :
k�[1�t]

1
k

/(k&1)
,(k&1)

, t # (0, 1], (2.6)

:
j; t�C j�1

/(C j )
,(C j )

�M :
1�k�1�t

1
k

/(k&1)
,(k&1)

, t # (0, 1]. (2.7)

Concerning the behaviour of order functions in a neighbourhood of the
origin, for , # 8 the numbers

:(,) := sup
C # (0, 1)

log ,*(C )
log C

, ;(,) := inf
C # (0, 1)

log ,
*

(C)
log C

are called the upper and lower Matuzewska index, respectively; see
W. Matuzewska and W. Orlicz [22] and the literature of the authors cited
there. These indices extract the rate of growth of , at the origin. For the
power function ,(t)=t_, as an example, we note that ,*(C )=,

*
(C )=C_

imply :(,)=;(,)=_. For arbitrary functions, which may oscillate, the
Matuzewska indices cover the rate of growth above and below in some
sense. Some basic properties of the indices are collected in the following

Lemma 2.3. Let :=:(,) and ;=;(,) be the Matuzewska indices of
, # 8.

(a) The indices are real numbers :, ; # R, :�;, and there hold

:(,)= lim
C � 0+

log ,*(C )
log C

, ;(,)= lim
C � 0+

log ,
*

(C )
log C

. (2.8)

(b) For a given =>0 there exists some C0 # (0, 1) such that

C:�,*(C)<C:&=, C;+=<,
*

(C )�C;, C # (0, C0]. (2.9)
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In particular,

,
*

(C )�C;�C:�,*(C) \C # (0, 1]. (2.10)

(c) The Matuzewska indices are related by

: \1
,+=&;(,), ; \1

,+=&:(,), (2.11)

and for the product of order functions ,1 , ,2 # 8 we have ,1,2 # 8, satisfying

&�<:(,1)+:(,2)�:(,1 ,2)�;(,1,2)�;(,1)+;(,2)<�. (2.12)

For approximation theorems we need a tool for estimating different
order functions. To this end we define a growth relation O in 8, which
allows a comparison of the growth of order functions at the origin.

Definition 2.3. Let ,1 , ,2 : (0, 1] � R be positive. The growth relation
,1 O,2 holds iff there exists a constant C # (0, 1) such that

lim sup
t � 0+

,1 (Ct)
,1 (t)

,2 (t)
,2 (Ct)

<1.

We write ,1P,2 , iff t=,1 (t)O,2 (t) for all =>0.

For instance, let _i , \i # R, i=1, 2, and

,i (t) :=t_i |log t|\i, t # (0, 1�2], ,i (t) :=1, t # (1�2, 1].

Then it is obvious that ,1 O,2 iff _1>_2 , and ,1P,2 iff _1�_2 . In par-
ticular, for , # 8 we have ,O1 iff ,*(C)<1. Roughly speaking, ,1O,2

means that the growth of ,1 and ,2 differ by a power t= at the origin.
Changes of growth in terms of powers of the logarithm are not effected by
the growth relation O . The connections between the Matuzewska indices
and our growth relation are given by the following

Proposition 2.4. Let ,1 , ,2 # 8; then the following four assertions are
equivalent:

(i) ,1O,2 ;

(ii) There exist constants :0>0 and C0 # (0, 1] such that

,1 (Ct)
,1 (t)

,2 (t)
,2 (Ct)

<C:0, 0<t<t0 (C ),

for all C # (0, C0] and some t(C ) # (0, 1];
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(iii) :(,1 �,2 )>0;

(iv) ;(,1 �,2 )<0.

Remark 2.4. The class 8 equipped with pointwise multiplication forms
a multiplicative Abelian group with identity element 1(t) :=1.

The relation O in 8 is transitive, and 8 forms with O a (partial)
ordered group. In particular, for ,1 , ,2 , ,3 # 8 satisfying ,1 O,2 and
,2 O,3 , we have ,1 O,3 , and ,1O,2 implies ,1,3O,2,3 .

The identity element 1 separates the convergent and divergent elements
of 8; we have

lim
t � 0+

,(t)=0, lim
t � 0+

,(t)=�,

for ,O1 and ,o1, respectively. Since we are interested in convergent
elements of 8, we define 9 :=[� # 8; �O1].

Now we want to give some characterizations for O-RV functions, in
combination with our growth relation. Owing to the group property it is
sufficient to compare only one member of 8 with the identity element.
A function on (0, 1] is said to be almost increasing or almost decreasing, if
there is some constant M>0 such that f (t1)�Mf (t2) or f (t2)�Mf (t1) for
all t1 , t2 # I, t1�t2 .

Proposition 2.5. Let , # 8.

(a) If , is almost increasing, or if

,(t)t|
t

0
,(u)

du
u

, t � 0+, (2.13)

then there holds ,P1.

(b) Conversely, for each ,O1, the function , is bounded, almost
increasing, and we have (2.13).

(c) If , is almost decreasing, or if , satisfies

,(t)t|
1

t
,(u)

du
u

, t � 0+, (2.14)

then ,p1.

(d) ,o1 implies that , is almost decreasing, and (2.14).

In both cases the integrals in (2.13) and (2.14) can be replaced by the
corresponding sums in (2.4) and (2.5), respectively.
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In the next sections we will frequently use that

:
1�k�1�t

1
k�(k&1)

�M
1

�(t)
(2.15)

hold for all � # 9 and t # (0, 1].

3. APPROXIMATION SPACES

In this section we provide the basic definitions and properties which are
needed for approximation theorems in Banach spaces. In particular, we
wish to introduce a family of seminorms to establish a seminorm exhaus-
tion method required in the important application of weighted algebraic
approximation.

Let X be a Banach space endowed with a norm & }&X and let [ | } |X, t ;
t # (0, 1]] be a family of seminorms defined on X, satisfying the two
conditions

| f |X, h�| f |X, t�M & f &X , f # X, 0<t�h�1, (3.1)

for some constant M>0 independent of f and the parameters t, h; and

if f # X with | f |X , t=0 for all 0<t�1, then f=0. (3.2)

For simplicity we write | f |X, t :=| f | X, 1 for t�1. A family [ | } |X, t ;
t # (0, 1]] of seminorms possesses the exhaustion property if the two condi-
tions 3.1 and 3.2 are satisfied. Thus, by the first condition the seminorms
| } |X, t are bounded by M & f &X and decreasing in t. The property 3.2 is a
separation property, also used in the theory of topological vector spaces to
give a characterization of Hausdorff spaces defined by seminorms. From
the exhaustion property we immediately obtain

if lim
t � 0+

| f |X, t=0, then & f &X=0.

In this sense one can say that the seminorms converge to the norm for
t � 0+, or the norm is exhausted by the seminorms.

The elements of approximation are given by a nested family of linear
subspaces S=[St]t # (0, 1] in X satisfying

Sh/St/X, 0<t�h�1. (3.3)

The (error of ) best approximation to f # X by elements of St is defined by

Et ( f )#Et ( f ; X ) := inf
gt # St

& f& gt &X , t # (0, 1]. (3.4)
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We also define the modified best approximation with respect to the semi-
norms by

E t*( f )#E t*( f ; X ) := inf
gt # St

| f&gt | X, t , t # (0, 1]. (3.5)

Note that the parameter t of the seminorms and St coincide, and the
(modified) best approximations are sublinear functionals bounded by & f &X

and M & f &X , respectively.
To guarantee that each element of X can be approximated by elements

of S0 :=�0<t�1 St , we require the Weierstrass property, namely that

lim
t � 0+

Et ( f )=0, f # X. (3.6)

By (3.1) it is obvious that

E t*( f )�MEt ( f ), t # (0, 1]. (3.7)

To establish an estimate of Et ( f ) by the modified best approximation
E t*( f ), we need a sort of converse of (3.1). The goal is to postulate the
required counterpart only on subspaces of St . S=[St]t # (0, 1] is said to
satisfy the equivalence condition, if there exists some constants M�0,
C* # (0, 1) and t0 # (0, 1] such that

&gt&X�M | gt |X, t�C* , gt # St , t # (0, t0]. (3.8)

Throughout, these constants C*, t0 are assumed to be fixed. Indeed, on
using the exhaustion property, we have

&gt&Xt | gt |X, t�C* , gt # St ,

justifying the name equivalence condition. Note that in applications the St

are usually finite dimensional, therefore (3.8) is much weaker than an
equivalence of & }&X and | } | X, t on the whole space X. We summarize these
properties in the following

Definition 3.1. Let X be a Banach space satisfying (3.1), (3.2), and
S=[St]t # (0, 1] be a family of linear subspaces in X such that (3.3), (3.6)
as well (3.8) hold for fixed constants C* # (0, 1), t0 # (0, 1]. Then the tuple
(X, S) or simply X is called an approximation space or A-space.

For the discrete case, i.e., t=1�n, n # N, the properties and assumptions
of an A-space are essentially introduced in [4]. First we prove the weak
equivalence of the best and modified best approximation.
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Proposition 3.1. Let X be an A-space; then for each C # [C*, 1) there
exists constants M=M(C )�0 and M� �0 such that

M� E t*( f )�Et ( f )�M :
�

j=0

E*C jt( f ) (3.9)

for all f # X and t # (0, t0].

Proof. The left hand estimate is given by (3.7). To estimate the best
approximation we can assume that the sum is finite. For an =>0, t # (0, t0]
we choose gC jt # SC jt satisfying

| f&gC jt | X, C jt�E*C jt( f )+C j=.

Using (3.8) and (3.1) it follows

&gC j+1t& gC jt&X �M| gC j+1t& gC jt | X, C j+1t�C*

�M[ | gC j+1t& f |X, C j+1t+| gC jt& f |X, C jt]

�M[E*C j+1t( f )+C j+1=+E*C jt( f )+C j=],

hence

:
�

j=0

&gC j+1t& gC jt &X�M {=+ :
�

j=0

E*C jt( f )= . (3.10)

By the finiteness of the right hand side [gC jt] j # N0
forms a Cauchy sequence

in the complete space X, converging to a g # X. Then (3.1) yields for
h # (0, 1]

| f&g|X, h� lim
j � �

[ | f&gC jt | X, h+| gC jt& g|X, h]

�M lim
j � �

[ | f&gC jt |X, C jt+&gC jt& g&X ]

�M lim
j � �

[E*C jt( f )+C j=+&gC jt& g&X ]=0.

The separation property (3.2) then implies f =g. Therefore we have

f&gt= :
�

j=0

(gC j+1t& gC jt),

which implies (3.9) after using (3.10). K

The rate of convergence of the best approximation depends on the
smoothness of a given f # X, which has to be interpreted in a suitable way
in arbitrary Banach spaces. Instead of moduli of smoothness, which are
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only meaningful in specified function spaces, we will use modifications of
the Peetre K-functional. These K-functionals measure the distance of f to
a given subspace Y/X. If this subspace represents a class of smooth
elements, e.g., differentiable functions, then the K-functionals become
measures of the smoothness of f.

To be concrete, throughout the paper let X be a A-space and Y/X a
linear subspace with seminorm | } |Y and associate norm & }&Y :=
| } |Y+& }&X , such that Y is complete with respect to & }&Y , satisfying

S0/Y/X. (3.11)

The K-functional K( f, �(t)) is defined for given f # X, t # (0, 1], and
� # 9=[, # 8; ,O1], by

K( f, �(t))#K( f, �(t); X, Y ) := inf
g # Y

[& f& g&X+�(t) | g|Y ].

In some applications it is more advantageous to use a modified K-func-
tional, given by

K*( f, �(t))#K*( f, �(t); X, Y ) := sup
0<h�t

inf
g # Y

[ | f&g|X, h+�(h) | g|Y ].

Since the seminorm | f&g|X, h is decreasing and �(h) is almost increasing
in h, the supremum is taken to yield monotonicity. K-functionals involving
families of seminorms in special function spaces are already used in
approximation theory; see, e.g., Ditzian and Totik [13], and H. Mevissen
and R. J. Nessel [20, 21] The definition above first appeared in [4].

In the following lemma we collect some elementary properties of the
K-functionals.

Lemma 3.2. For � # 9 the K-functionals K( f, �(t)) and K*( f, �(t)) are
sublinear bounded functional in f # X, and we have either K( f, �(t)) # 8 or
K( f, �(t))#0, satisfying for all fixed C # (0, 1]

1
M

K( f, �(t))�K( f, �(h))�MK( f, �(t)) (3.12)

for all t, h # (0, 1], C�t�h�1. Furthermore, for , # 8 we have

|
t

0
,(u) K( f, �(u))

du
u

t :
k�1�t

1
k

,(k&1) K( f, �(k&1))

t :
�

j=0

,(C jt) K( f, �(C jt))
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as well as

|
1

t
,(u) K( f, �(u))

du
u

t :
1�k�1�t

1
k

,(k&1) K( f, �(k&1))

t :
j; t�C j�1

,(C j) K( f, �(C j)),

where the constants, involved by t , are independent of f # X and t # (0, 1].
All these assertions remain valid, if K( f, �(t)) is replaced by the modified
K*-functional K*( f, �(t)). Finally it holds

K*( f, �(t))�MK( f, �(t)), f # X, t # (0, 1]. (3.13)

Proof. On using Proposition 2.1, we obtain for arbitrary g # Y

& f& g&X+
1
M

�(t) | g|Y�& f& g&X+�(h) | g|Y�& f& g&X+M�(t) | g|Y ,

for all t, h # (0, 1], C�t�h�1. Taking the infimum over all g # Y, there
follows (3.12). This also implies that K( f, �( } )) # 8. Concerning the
modified K-functional, because of the monotonicity, we have only to estab-
lish the right hand side of (3.12) for K*( f, �(t)). Let t�u�h; then by
Proposition 2.1 for arbitrary g # Y,

| f&g|X, u+�(u) | g|Y�M[ | f&g|X, t+�(t) | g|Y ],

and therefore

inf
g # Y

[ | f&g| X, u+�(u) | g|Y ]�MK*( f, �(t)).

Thus (3.12) follows from

K*( f, �(h))=max[K*( f, �(t)), sup
t�u�h

inf
g # Y

[ | f&g|X, u+�(u) | g|Y ]]

�MK*( f, �(t)).

Recalling Remark 2.2, the equivalences between the integral and sums
above are an immediate consequence of (3.12). As to (3.13), for 0<u<t
and g~ # Y, we have on noting that � is almost increasing according to
Proposition 2.5,

| f&g~ |X, u+�(u) | g~ |Y�M[& f& g~ &X+�(t) | g~ | Y ],
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and,

sup
0<u�t

inf
g # Y

[ | f&g|X, u+�(u) | g| Y ]�M[& f& g~ &X+�(t) | g~ |Y ].

Taking the infimum over g~ # Y gives (3.13). K

4. DIRECT AND INVERSE THEOREMS

In the following, let X be an A-space in the sense of Definition 3.1. As
mentioned above, the K-functionals become a measure of smoothness if the
subspace Y can be interpreted as a subspace of smooth elements of X. This
is naturally satisfied, if the best approximation of elements of Y vanishes
sufficiently rapidly.

The subspace Y is said to satisfy a Jackson(-type) inequality of order
� # 9, if

Et ( f )�M�(t) | f |Y , f # Y, t # (0, t0], (4.1)

and Y satisfies a weak Jackson(-type) inequality of order �, if

E t*( f )�M�(t) | f |Y , f # Y, t # (0, t0]. (4.2)

In the next fundamental lemma we show, that these two types of Jackson
inequalities are equivalent. Thus in applications it suffices to verify the
weaker form (4.2), and in the following we can require the stronger
inequality (4.1).

Lemma 4.1. If � # 9, then the Jackson inequality (4.1) is satisfied iff the
weak Jackson inequality (4.2) holds.

Proof. According to Proposition 3.1 we just have to assume (4.2). Then
again by Propositions 3.1 and 2.5 we obtain the estimate

Et ( f )�M :
�

j=0

E*C jt( f )�M | f | Y :
�

j=0

�(C jt)�M�(t) | f | Y

for t # (0, t0] and C # [C*, 1). K

The following estimates of the best approximation by K-functionals are
referred to as direct or Jackson(-type) theorems.
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Theorem 4.2. Let Y/X satisfy a Jackson inequality of order � # 9.
Then for all f # X, t # (0, t0] we have

Et ( f )�MK( f, �(t)), (4.3)

Et ( f )�M |
t

0
K*( f, �(u))

du
u

. (4.4)

Proof. The sublinearity of Et ( f ) together with the Jackson inequality
(4.1) imply for arbitrary g # Y

Et ( f )�Et ( f&g)+Et (g)�M[& f& g&X+�(t) | g|Y ].

Taking the infimum over all g # Y we obtain (4.3). By the same arguments
we also obtain

E t*( f )�MK*( f, �(t)).

Inserting this estimate into (3.9) we derive (4.4) after using Lemma 3.2. K

The main ingredient to establish inverse theorems is a Bernstein
inequality which controls the behaviour of the Y seminorms applied to the
smooth approximands gt # St by their X norms.

A subspace Y/X satisfies a Bernstein(-type) inequality of order � # 9, if

| gt |Y�M
1

�(t)
&gt&X , gt # St , t # (0, 1]. (4.5)

A corresponding weak Bernstein inequality is obsolete, because the norm
& }&X and the seminorm | } |X, t are equivalent on St . Typical methods estab-
lishing estimates of measures of smoothness in terms of the best
approximation are telescoping arguments.

Lemma 4.3. Let Y/X satisfy the Bernstein inequality (4.5) of order
� # 9. Then there exists a constant M�0 such that for all gt # St , t # (0, 1],

| gt |Y�M {& f &X+
1

�(t)
& f& gt&X+ :

1�k�1�t

1
k�(k&1)

E1�k ( f )= , f # X.

Proof. Let =>0 and choose N=N(t) # N0 satisfying 2&N&1<t�2&N.
Then there exist g~ 2& j # S2& j such that the inequality

& f& g~ 2& j &X�E2& j ( f )+2& j�(2& j) =
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holds for all j # N. Observing that gt& g~ 2&N # St we have, on using the
Bernstein inequality (4.5) and Proposition 2.1,

| gt& g~ 2&N | Y �M
1

�(t)
&gt& g~ 2&N &X

�M
1

�(t)
& f& gt&X+M

1
�(2&N)

& f& g~ 2&N &X

�M { 1
�(t)

& f& gt&X+
1

�(2&N)
E2&N( f )+2&N== .

Correspondingly we find

| g~ 2&j&1&g~ 2&j |Y�M
1

�(2&j&1)
& f&g~ 2&j&1&X+M

1
�(2&j)

& f&g~ 2&j&X

�M { 1
�(2&j&1)

E2&j&1( f )+2&j&1=+
1

�(2&j)
E2&j ( f )+2&j== ,

as well as

| g~ 1 |Y�M
1

�(1)
&g~ 1&X �M & f &X+M

1
�(1)

& f& g~ 1 &X

�M {& f &X+
1

�(1)
E1 ( f )+== ,

After summation of these estimates, the monotonicity of the best
approximation allows us to apply (2.7) to deduce

| gt |Y �| g~ 1 |Y+ :
N&1

j=0

| g~ 2& j&1& g~ 2& j |Y+| gt& g~ 2&N |Y

�M {=+& f &X+
1

�(t)
& f& gt &X+ :

N

j=0

1
�(2& j)

E2& j ( f )=
�M {=+& f &X+

1
�(t)

& f& gt &X+ :
1�k�1�t

1
k�(k&1)

E1�k ( f )= .

Thus the assertion is proved, because =>0 is independent of the last term. K
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The inverse theorem now reads

Theorem 4.4. If a subspace Y/X satisfies a Bernstein inequality of
order � # 9, then for t # (0, 1] we have the weak type estimate

K( f, �(t))�M�(t) {& f &X+ :
1�k�1�t

1
k�(k&1)

E1�k ( f )= , f # X. (4.6)

Furthermore, for each fixed t1 # (0, 1] the summation over 1�k�1�t can be
replaced by summation over 1�t1�k�1�t.

Proof. For a given =>0 we choose elements gt # St such that

& f& gt &X�Et ( f )+=.

An application Lemma 4.3 yields immediately

K( f, �(t))�& f&gt &X+�(t) | gt | Y

�Et ( f )+=+M�(t)

_{& f &X+
1

�(t)
(Et ( f )+=)+ :

1�k�1�t

1
k�(k&1)

E1�k ( f )= ,

hence (4.6) after using (2.3) and the monotonicity of Et ( f ). The bounded-
ness of the best approximation and � on [t1 , 1] imply for a constant
M=M(t1)>0

:
1�k�1�t1

1
k�(k&1)

E1�k ( f )�M & f &X ,

completing the proof. K

Remark 4.1. Recalling that K*( f, �(t))�MK( f, �(t)), the K-functional
may be replaced by the K*-functional. If in particular | g|Y=0 for all
g # S1 , then we get K( f&g, �(t))=K( f, �(t)), g # S1 , by the definition of
the K-functional. In this case we obtain on applying Theorem 4.4 to f&g
and taking the infimum over all g # S1 ,

K*( f, �(t))�MK( f, �(t))�M�(t) :
1�k�1�t

1
k�(k&1)

E1�k ( f ) \f # X.

(4.7)

Thus if the approximands of S1 are contained in the null-space N(Y ) :=
[g # Y; | g|Y=0] of Y, the term �(t) & f &X (of order �) can be dropped.
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Obviously the behaviour of the best approximation Et ( f ) depends only
on the underlying space X and the family S of approximands. In par-
ticular, Et ( f ) is independent of any choice of the subspace Y or of the
order � of the required Jackson and Bernstein inequalities. On the other
hand, the latter inequalities give a characterization of the smoothness of the
elements of Y. This gives a justification for the following

Definition 4.2. Let Y be a linear subspace of an A-space (X, S) such
that S0/Y/X, and Y is complete with respect to & }&Y . Then Y is called
a subspace of order � # 9, if Y satisfies a weak Jackson inequality (4.1) as
well as a Bernstein inequality (4.5) of order �. If the corresponding
Matuzewska indices of � coincide, we identify the order with the values
:(�)=;(�).

In applications the order usually corresponds to the order of differen-
tiability, e.g., the space C r

2? is a subspace of C2? of order :(tr)=;(tr)=r.
By combining the direct and inverse theorem we are now able to prove

estimates between the classical and modified K-functionals.

Proposition 4.5. Let Y/X be a subspace of order � # 9. Then there
exists a constant M>0 such that

1
M

K*( f, �(t))�K( f, �(t))

�M {�(t) & f &X+|
t

0
K*( f, �(u))

du
u

+�(t) |
1

t

1
�(u)

K*( f, �(u))
du
u = , (4.8)

for all f # X and t # (0, 1].

Proof. The left hand inequality has already been established in
Lemma 3.2. On [t0 , 1] we obtain on noting �t1

K( f, �(t))�M & f &X�M�(t) & f &X , t # [t0 , 1].

Therefore it remains to verify the right hand estimate for t # (0, t0]. To see
this we use Lemma 3.2 to insert the direct theorem (4.4) into Theorem 4.4
yielding

K( f, �(t))�M�(t){& f &X+ :
1�t0� j�1�t

1
j�( j&1)

:
k� j

1
k

K*( f, �(k&1))= (4.9)
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for each j # N with 1�t0� j�1�t. Now we apply (2.15) for h=t and h=k&1

to obtain after splitting the inner sum and changing the order of summation

:
1� j�1�t

1
j�( j&1)

:
k�j

1
k

K*( f, �(k&1))

= :
k>1�t \ :

1� j�k

1
j�( j&1)+

1
k

K*( f, �&1))

+ :
1�k�1�t \ :

1� j�1�t

1
j�( j&1)+

1
k

K*( f, �&1))

�M
1

�(t)
:

k�1�t

1
k

K*( f, �(k&1))

+M :
1�k�1�t

1
k�(k&1)

K*( f, �(k&1)).

Passing over to the corresponding integral representation the assertion
follows by inserting this inequality into (4.9). K

In preparation for the next sections we state the following

Corollary 4.6. Let Y/X be a subspace of order � # 9 and �O�� O1.
Then for f # X we have

1
M |

1

0

1

�� (t)
K*( f, �(t))

dt
t

�|
1

0

1

�� (t)
K( f, �(t))

dt
t

�M {& f &X+|
1

0

1

�� (t)
K*( f, �(t))

dt
t = .

In particular, if one of these integrals is finite, so are the others.

Proof. The left hand inequality is a trivial consequence of Proposi-
tion 4.5. Integrating the right estimate of 4.8, we obtain after changing the
order of integration

|
1

0

1

�� (t)
K( f, �(t))

dt
t

�M {& f &X |
1

0

1

�� (t)

dt
t

+|
1

0
K*( f, �(u)) |

1

u

1

�� (t)

dt
t

du
u

+|
1

0

1
�(u)

K*( f, �(u)) |
u

0

1

�� (t)

dt
t

du
u = .
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Applying Proposition 2.5 on 1��� o1 and ���� O1, respectively, it follows

|
u

0

�(t)

�� (t)

dt
t

t
�(u)

�� (u)
, |

1

u

1

�� (t)

dt
t

t
1

�� (u)
,

proving the right inequality. K

The interplay between the direct and the inverse theorem becomes
clearer if we use Proposition 2.5 to formulate the foregoing theorems as
O-statements.

Corollary 4.7. Let X be an A-space, , # 8 and Y/X a subspace of
order � # 9.

(a) If �O,, then the following statements are equivalent for f # X:

(i) Et ( f ; X )=O(,(t)), t � 0+;

(ii) K( f, �(t); X, Y )=O(,(t)), t � 0+.

(b) If additionally ,O1, then (i) and (ii) of part (a) are equivalent to

(iii)* K*( f, �(t); X, Y )=O(,(t)), t � 0+.

5. SIMULTANEOUS APPROXIMATION AND
REDUCTION THEOREMS

In function spaces, the problem of characterizing the best approximation
of derivatives of a given function f in terms of moduli of smoothness
applied to f, is referred to as simultaneous approximation. In arbitrary
Banach spaces X there is no way to define the derivative of an element
f # X in a classical manner by limits of differences. In order to make the
study of simultaneous approximation in Banach spaces possible, we define
instead a closed operator D on a subspace XD/X such that in applications
D can be identified with suitable differential operators. Using this operator
we have to estimate the best approximation of Df by K-functionals applied
to f. We will see below that in the case of weighted algebraic approxima-
tion the r th derivative of a function f # L p has to be understood as an
element of a different weighted space L p

.r instead of L p itself. To include
weighted algebraic approximation as an application of our general
approach, we have to allow that our operator D maps XD into a different
Banach space X� . Again, throughout this section we use X and X� as
abbreviations for A-spaces (X, S) and (X� , S� ), respectively.
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Definition 5.1. Let (X, S), (X� , S� ) be two A-spaces and XD/X a sub-
space of order �D # 9. If there exists a closed linear operator

D: XD � X� ,

such that

1
M

| f |XD
�&Df &X� �M | f | XD

, f # XD (5.1)

for a constant M>0, and if for t # (0, 1]

St/XD , D(St)=S� t , (5.2)

then D is said to be an abstract differential operator (from XD in X� ) or an
abstract derivative of order �.

It should be mentioned that X� denotes not denote the closure of X. For
f # XD , i.e., f possesses a derivative of order �D , we use also the notation
Df # X� . Throughout this section let (X, S) and (X� , S� ) be two A-spaces
with approximands S=[St], S� =[S� t], respectively. First of all we
examine the relationship between the best approximation of f in X and the
best approximation of Df in X� . It turns out that the approximation order
of Df reduces exactly by the order of the subspace XD .

Proposition 5.1. Let D be an abstract derivative of order �D # 9 from
XD/X into X� . If f # XD , then

Et ( f ; X )�M�D(t) Et (Df ; X� ), t # (0, t0]. (5.3)

Conversely, if for f # X the series

:
�

k=1

1
k�D(k&1)

E1�k ( f ; X ) (5.4)

is convergent, then there hold Df # X� and for t # (0, 1] also

Et (Df ; X� )�M :
k�[1�t]

1
k�D(k&1)

E1�k ( f ; X ) (5.5)

as well as

Et (Df ; X� )�M :
�

j=0

1
�D(2& jt)

E2& jt ( f ; X ). (5.6)
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Proof. First we obtain on using the estimate (5.1) and (5.2),

1
M

inf
gt # St

| f&gt |XD
�Et (Df ; X� )�M inf

gt # St

| f&gt | XD
(5.7)

for all f # XD and t # (0, 1]. To verify (5.3), we get for arbitrary gt # St by
using the Jackson inequality (4.1) with respect to XD ,

Et ( f ; X )=Et ( f&gt ; X )�M�D(t) | f&gt | XD
, t # (0, t0].

Taking the infimum over all gt # St , (5.3) is established. Now, let f # X. We
have to show that f # XD , if the series (5.4) is finite. For a given =>0 we
choose approximands gh # Sh , h # (0, 1], satisfying

& f& gh&X�Eh ( f ; X )+h�D(h)=. (5.8)

Similarly as in the proof of Lemma 4.3 we obtain on using the Bernstein
inequality with respect to XD ,

| g2& j&1&g2& j|XD
�M { 1

�D (2&j&1t)
& f&g2& j&1t&X+

1
�D (2&jt)

& f&g2& jt&X=
�M { 1

�D (2&j&1t)
E2& j&1t ( f ; X)+2&j&1=

+
1

�D(2&j)
E2& jt ( f ; X)+2&j== .

Taking the sum over j # N yields

:
�

j=0

| g2& j&1t& g2& jt |Z�M {=+ :
�

j=0

1
�D(2& jt)

E2& jt ( f ; X )=
�M {=+ :

k�[1�t]

1
k�D(k&1)

E1�k ( f ; X )= . (5.9)

Thus, by assumption (5.4), [g2& jt] j # N0
forms a Cauchy sequence with

respect to | } |XD
, and, according to the Weierstra? property (3.6), with

respect to & }&XD
as well. Denoting its limit by g # XD and using the

Weierstra? property again, we find

& f& g&X� lim
j � �

[& f& g2& jt&X+&g2& jt& g&X ]=0,
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concluding f =g # XD , and

| f&gt |XD
� :

�

j=0

| g2& j&1t& g2& jt | XD
.

Since = is arbitrary, (5.9) implies

inf
ht # St

| f&ht |XD
�M :

�

j=0

1
�D(2& jt)

E2& jt ( f ; X )

�M :
k�[1�t]

1
k�D(k&1)

E1�k ( f ; X ),

proving (5.5) and (5.6). K

Now we can state the theorem on simultaneous approximation, i.e.,
direct and inverse theorems involving the best approximation Et (Df ; X� )
of Df.

Theorem 5.2. Let Y/X be a subspace of order � # 9 and D an abstract
derivative of order �D # 9 from XD/X into X� such that �O�D . If the
integral

|
1

0

1
�D(u)

K( f, �(u); X, Y )
du
u

(5.10)

is finite for f # X, then Df # X� , and there holds the direct estimate

Et (Df ; X� )�M |
t

0

1
�D(u)

K( f, �(u); X, Y )
du
u

, t # (0, t0]. (5.11)

For each f # XD and t # (0, 1] we have the inverse inequality

K( f, �(t); X, Y )�M�(t) {& f &X+ :
1�k�1�t

�D(k&1)
k�(k&1)

E1�k (Df ; X� )= . (5.12)

The statements of the theorem remain valid, if in (5.10), (5.11), or (5.12) the
K-functional is replaced by the K*-functional. Furthermore, the summation
over 1�k�1�t in estimate (5.12) can be replaced by summation over
1�t1�k�1�t for each fixed t1 # (0, 1].

Proof. First, by Corollary 4.6 the expression (5.10) is finite iff the
corresponding integral over the K*-functional is finite. Inserting the direct
estimate (4.3) into (5.5), the first estimate (5.11) follows immediately.
In particular, the convergence of the above integral (5.3) implies f # XD .
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Concerning the modified K*-functional, estimating the term E2& jt in (5.6)
by the associated sum of the direct estimate (4.4), we obtain

Et (Df ; X� )�M :
�

j=0

1
�D(2& jt) \ :

�

k=0

K*( f, �(2&k& jt); X, Y )+
=M :

�

k=0
\ :

k

j=0

1
�D(2& jt)+ K*( f, �(2&kt); X, Y )

�M :
�

k=0

1
�D(2&kt)

K*( f, �(2&kt); X, Y ).

In the last step above, we used in view of Propositions 2.1 and 2.5 that

:
k

j=0

1
�D(2& jt)

�M :
j; 2&kt�2& j�1

1
�D(2& j)

�M
1

�D(2&kt)
.

Thus, (5.11) holds for the K*-functional also. It remains to show the
inverse estimate. For t # [t0 , 1] the K-functionals are bounded by
M�(t) & f &X , and if t # (0, t0] we can insert the inequality (5.3) into the
inverse Theorem 4.4 to obtain the assertion (5.12) immediately. K

Theorems relating the behaviour of moduli of smoothness of functions
and their derivatives are called reduction theorems, because by increasing
the order of the derivative one can reduce the order of its modulus of
smoothness. If for instance the modulus of smoothness |r (



Again, the K-functional in (5.13) or (5.14) may be replaced by the modified
K*-functional.

Conversely, for f # XD and t # (0, 1] there hold the estimates

K( f, �(t); X, Y )�M�(t) {& f &X+|
1

t

�D(u)
�(u)

K(Df, �� (u); X� , Y� )
du
u = , (5.15)

K*( f, �(t); X, Y )�M {�(t) & f &X+�D(t) |
t

0
K*(Df, �� (u); X� , Y� )

du
u

+�(t) |
1

t

�D(u)
�(u)

K*(Df, �� (u); X� , Y� )
du
u = . (5.16)

Proof. Assuming (5.13) for the K- or K*-functional the existence of
the derivative Df # X� was already shown in Theorem 5.2. And again, on
using Proposition 2.1 it suffices to verify the estimates for t # (0, t*],
t* :=min[t0 , t� 0]. The direct estimate of Theorem 5.2 yields for j # N,
j�1�t*

E1�j (Df ; X� )�M :
k� j

1
k�D(k&1)

K*( f, �(k&1); X, Y ),

and by Theorem 4.4 applied to X� , Y� instead of X, Y it follows that

K(Df, �� (t); X� , Y� )�M�� (t) {&Df &X� + :
1�t0� j�1�t

1

j�� ( j&1)

_\ :
k� j

1
k�D (k&1)

K*( f, �(k&1); X, Y )+= .

We change the order of summation and apply (2.15) for h=1�k and h=t
to deduce

K(Df, �� (t); X� , Y� )

�M�� (t) {&Df &X� +\ :
1�k�1�t

:
1� j�k

+ :
k�1�t

:
1� j�1�t+

_
1

j�� ( j&1)

1
k�D (k&1)

K*( f, �(k&1); X, Y )+=
�M�� (t) {&Df &X� + :

1�k�1�t

1

k�� (k&1) �D (k&1)

1
k�D (k&1)

_K*( f, �(k&1); X, Y )+
1

�� (t)
:

k�1�t

1
k�D (k&1)

K*( f, �(k&1); X, Y )+=
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The corresponding integral representation together with (3.13) imply (5.14)
for the K- and K*-functionals.

The inverse estimate (5.15) follows from inequality (5.3) in Proposi-
tion 5.1 and Theorem 4.4 applied to the A-space (X� , S� ). Finally, to show
the last assertion (5.16), we insert the estimate

E1�j (Df ; X� )�M :
k� j

1
k

K*(Df, �� (k&1); X� , Y� ), j�1�t*,

which follows from Theorem 4.2, into the inverse inequality of Theorem 5.2
to obtain in the same way as above

K*( f, �(t); X, Y )�M�(t) {& f &X+ :
1�t*� j�1�t

�D ( j&1)
j�( j&1)

_ :
k�j

1
k

K*(Df, �� (k&1); X� , Y� )=
�M�(t) {& f &X+\ :

k�1�t

:
1� j�1�t

+ :
1�k�1�t

:
1� j�k+

_
�D ( j&1)
j�( j&1)

1
k

K*(Df, �� (k&1); X� , Y� )=
�M {�(t) & f &X+�D (t) :

k�1�t

K*(Df, �� (k&1); X� , Y� )

+�(t) :
1�k�1�t

�D (k&1)
k�(k&1)

K*(Df, �� (k&1); X� , Y� )=
Thus the theorem has been verified. K

Finally we establish abstract versions of the so called de la Valle� e
Poussin-Stec� kin-type estimates.

Theorem 5.4. Let Y� /X� be a subspace of order �� # 9, and let D be a
derivative of order �D # 9 on XD into X� . For f # XD and t # (0, t*],
t* :=min[t0 , t� 0], we have

Et ( f ; X )�M�D(t) K(Df, �� (t); X� , Y� ), (5.17)

Et ( f ; X )�M�D(t) |
t

0
K*(Df, �� (u); X� , Y� )

du
u

. (5.18)
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Conversely, if the series

:
�

k=1

1
k�D(k&1)

E1�k ( f ; X ) (5.19)

converges for a given f # X, then the derivative Df # X� exists, and the follow-
ing estimates hold for t # (0, 1]

K(Df, �� (t); X� ,Y� )

�M {�� (t) &Df &X� +�� (t) :
1�k�1�t

1

k�� (k&1) �D(k&1)
E1�k ( f ; X )

+ :
k�1�t

1
k�D(k&1)

E1�k ( f ; X )= , (5.20)

as well as,

K*(Df, �� (t); X� ,Y� )

�M {�� (t) &Df &X� +�� (t) :
1�k�1�t

1

k�� (k&1)�D(k&1)
E1�k ( f ; X )

+ :
k�1�t

1
k�D(k&1)

E1�k ( f ; X )= . (5.21)

Proof. An application of Theorem 4.2 for X� to (5.3) and (5.5) implies
the assertions (5.17) and (5.18) immediately. Assuming (5.19), on using
Proposition 5.1 we obtain f # XD , and analogously as in the proof of the
last theorem we deduce the remaining estimates by inserting (5.5) for t=1�j
into the inverse Theorem 4.4. K

Estimates between K-functionals with respect to subspaces of different
orders are referred to as Marchaud-type inequalities.

Theorem 5.5. Let X be an A-space and let Y, Z/X be subspaces of
orders �, �Z # 9. Then for f # X and t # (0, 1] we have

K( f, �(t); X, Y )�M�(t) {& f &X+|
1

t

1
�(u)

K( f, �Z (u); X, Z)
du
u = , (5.22)
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and

K*( f, �(t); X,Y )�M {�(t) & f &X+|
t

0
K*( f, �Z (u); X, Z)

du
u

+�(t) |
1

t

1
�(u)

K*( f, �Z (u); X, Z)
du
u = . (5.23)

If �O�Z , then Y/Z, and

K( f, �(t); X, Y )�M[�(t) & f &X+K( f, �Z (t); X, Z)], t # (0, 1]. (5.24)

Proof. As before, we have only to consider t # (0, t0]. The estimate
(5.22) can be obtained readily by combining the direct and inverse
theorems (4.3) and (4.6). Similarly, on using (4.4) instead of (4.3) with the
inverse Theorem 4.4, we obtain

K*( f, �(t); X, Y )

�M�(t) {& f &X+ :
1�t0� j�1�t

1
j�( j&1)

E1�j ( f )=
�M�(t) {& f &X+ :

1� j�1�t

1
j�( j&1)

:
k� j

1
k

K*( f, �Z (k&1); X, Z)= .

As before, on applying (2.15) and changing the order of summation, we get

K*( f, �(t); X, Y )�M�(t) {& f &X+\ :
k�1�t

:
1� j�1�t

+ :
1�k�1�t

:
1� j�k+

_
1

j�( j&1)
1
k

K*( f, �Z (k&1); X, Z)=
�M {�(t) & f &X+ :

k�1�t

1
k

K*( f, �Z (k&1); X, Z)

+�(t) :
1�k�1�t

1
k�(k&1)

K*( f, �Z (k&1); X, Z)= ,

establishing (5.23).
Now let �O�Z ; then 1��o1, �Z ��o1. Following the proof of the

Jackson theorem, the Jackson inequality (4.1) implies for arbitrary g # Z,

Et ( f )�Et ( f&g)+Et (g)�& f& g&X+�Z (t) | g| Z .
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An application of the direct Theorem 4.4 and Proposition 2.5 yield

K( f, �(t); X, Y )

�M�(t) {& f &X+ :
1�t0�k�1�t

1
k�(k&1)

(& f&g&X+�Z (k&1) | g|Z)=
�M[�(t) & f &X+& f&g&X+�Z (t) | g| Z].

We now take the infimum over g # Z to deduce (5.24). Finally, using the
Jackson inequality again, for f # Y we have

Et ( f )�M�(t) | f |Y=O(�(t)), t # (0, t0];

thus Proposition 5.1 implies f # Z, since �O�Z . K

The interplay of the approximation orders between the theorems on
simultaneous approximation and the reduction theorems become clearer,
if we use Proposition 2.5 to formulate the foregoing theorems as
O-statements.

Corollary 5.6. Let X, X� be A-spaces, Y/X, Y� /X� subspaces of
orders �, �� # 9, respectively, and D: XD � X� an abstract derivative of order
�D # 9. Then for f # X and , # 8 satisfying �O,O�D and ,o�� �D the
following statements are equivalent:

(i) Et ( f ; X )=O(,(t)), t � 0+;

(ii) K( f, �(t); X, Y )=O(,(t)), t � 0+;

(ii)* K*( f, �(t); X, Y )=O(,(t)), t � 0+;

(iii) Df # X� and Et (Df ; X� )=O\ ,(t)
�D(t)+ , t � 0+;

(iv) Df # X� and K(Df, �� (t); X� , Y� )=O\ ,(t)
�D(t)+ , t � 0+;

(iv)* Df # X� and K*(Df, �� (t); X� , Y� )=O\ ,(t)
�D(t)+ , t � 0+.

The equivalences between (i) and (ii), (ii)* are the direct and inverse
theorems. The simultaneous approximation is given by the equivalences of
(iii) and (ii), (ii)*, and the implications concerning (ii), (ii)* and (iv), (iv)*
are called reduction theorems. Finally the theorems involving the equiv-
alences of (i) and (iv), (iv)* are referred to as theorems of de la Valle� e
Poussin-Stec� kin-type.
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6. BEST APPROXIMATION BY TRIGONOMETRIC
POLYNOMIALS

In this section we wish to apply the abstract theory to the problem of
best approximation by trigonometric polynomials. To this end let L p

2? ,
1�p<�, be the Banach space of the 2?-periodic Lebesgue measurable
functions f : R � C endowed with the norm

& f &p :={|
?

&?
| f (x) | p dx=

1�p

.

For simplicity we identify L�
2? with the space of all 2?-periodic continuous

functions on R equipped with the usual supremum norm & f &� :=
supx # R | f (x) |. In the following let 1�p��. Because of the periodicity
there is no need to separate the endpoints; thus we can identify the norms
by & }&X=& }&X, t :=& }&p for all t # (0, 1]. If we denote by 6n the set of tri-
gonometric polynomials tn (x)=�n

k=&n ak eikx, ak # C, of degree not
exceeding n # N0 , then the best approximation of f # L p

2? is given by

En ( f, L p
2?) := inf

tn # 6n

& f&tn&p .

Since the union of the subspaces 6n is dense in L p
2? , the couple

(L p
2? , [6n]n # N0

) forms a approximation space in the sense of Definition 3.1
if we use the discretization n=[1�t]. We denote by W p, r

2? the Sobolev space
of all functions f # L p

2? which coincide almost everywhere with an (r&1)-
times continuously differentiable function g, g(r&1) being absolutely con-
tinuous with g(r) # L p

2? , i.e., f # W p, r
2? iff f (r) exists almost everywhere and

belongs to L p
2? . Of course, if p=�, W �, r

2? is the space of all r-times
continuously differentiable 2?-periodic functions on R. In L p

2? we can
identify the K-functionals with moduli of smoothness. Defining for r # N
the r th (centered) difference of f with increment h>0 by 21

h f (x) :=
f (x+h�2)& f (x&h�2), 2r+1

h :=21
h2r

h , then the r-th modulus of smoothness
is given by

|r ( f, t) := sup
0<h�t

&2r
h f &p , t>0.

The following well known equivalence can be found in, e.g., R. A. DeVore
and G. G. Lorentz [10, Chap. 7, Sect. 2].

Proposition 6.1. For r # N there holds

|r ( f, t)tK( f, tr; L p
2? , W p, r

2? ), t # (0, 1],

where the constants induced are independent of f and t.
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The Sobolev spaces W p, r
2? form subspaces of order tr or r for short; this

is an immediate consequence of the validity of the Jackson and Bernstein
inequalities below (cf. P. L. Butzer and R. J. Nessel [5, p. 99] or [10,
pp. 97, 202]).

Proposition 6.2. For r # N there hold

En ( f )�Mn&r & f (r)&p , f # W p, r
2? , n # N0 , (6.1)

&t (r)
n &p�Mnr &tn&p , tn # 6n , n # N0 . (6.2)

Now, an application of Theorems 4.2, 4.4 implies the direct and inverse
theorem on best trigonometric approximation.

Corollary 6.3. If f # L p
2? and r # N, then

En ( f ; L p
2?)�M|r ( f, n&1), n # N, (6.3)

as well as

|r ( f, t)�Mtr :
0�k�1�t

(k+1)r&1 Ek ( f ; L p
2?), t # (0, 1]. (6.4)

Turning over to simultaneous approximation we have to identify
abstract differentiation with the ordinary derivative. Noting that differen-
tiation of trigonometric polynomials does not reduce the degree of the
polynomial, the null-th Fourier coefficient vanishes instead. Therefore we
denote by L� p

2? , W� p, r
2? , and 6� n the spaces of all elements f of L p

2? , W p, r
2? ,

and 6n , respectively, satisfying f ^ (0)=1�(2?) �?
&? f (u) du=0. These spaces

have the same approximation properties as do their non-bared counter-
parts. To see this, we use for f # L� p

2? and tn # 6n the estimate

& f&(tn&tn ^ (0))&p=& f&tn&( f ^ (0)&tn ^ (0))&p�M & f&tn&p ,

to obtain

En ( f ; L p
2?)�En ( f ; L� p

2?)�MEn ( f ; L p
2?), f # L� p

2? , n # N0 . (6.5)

Similarly, for f # L� p
2? and r # N there hold

K( f, tr; L p
2? , W p, r

2? )�K( f, tr; L� p
2? , W� p, r

2? )�MK( f, tr; L p
2? , W p, r

2? ),

yielding

1
M

|r ( f, t)�K( f, tr; L� p
2? , W� p, r

2? )�M|r ( f, t), f # L� p
2? , t>0. (6.6)
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Hence, it is sufficient to consider only the best approximation En ( f ; L p
2?).

Furthermore, it follows that the spaces (L� p
2? , [6� n]n # N0

) form A-spaces,
and the Sobolev spaces W� p, r

2? are subspaces of order r # N. In particular, the
operator

Dr: W p, r
2? � L� p

2? , f [ f (r)

is an abstract derivative of order r (or tr).
On using Theorem 5.2 and the fact that trO t l iff l<r, the direct and

inverse theorems on simultaneous approximation now read

Corollary 6.4. Let r, l # N such that l<r. If for f # L p
2? the integral

|
1

0
u&l&1|r ( f, u) du

is finite, then f belongs to f # W p, l
2? , and

En ( f (l ); L p
2?)�M |

1�n

0
u&l&1|r ( f, u) du.

Conversely, if f # W p, l
2? , then we have

|r ( f, t)�Mtr :
0�k�1�t

(k+1)r&l&1 Ek ( f (l ); L p
2?), t # (0, 1].

It is well known that sufficiently fast convergence of the best approxima-
tion implies the differentiability of the underlying function. The correspond-
ing weak type inequalities of de la Valle� e Poussin-Stec� kin type follow from
Theorem 5.4

Corollary 6.5. Let l, r # N. If for f # L p
2? the series

:
�

k=1

k l&1Ek ( f ; L p
2?)

converges, then f # W p, l
2? . Additionally, for all f # W p, l

2? there hold the
estimates

En ( f ; L p
2?)�Mn&l|r ( f (l ), 1�n)

and

|r ( f (l ), t)�Mtr :
0�k�1�t

(k+1)r+l&1 Ek ( f ; L p
2?)+M :

k�1�t

kl&1Ek ( f ; L p
2?).
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7. BEST WEIGHTED ALGEBRAIC APPROXIMATION

We now wish to apply the abstract approximation theorems to the much
more delicate case of best approximation by algebraic polynomials in
weighted Lp spaces. This requires the full use of the exhaustion method by
a family of seminorms. Let .(x) :=- x(1&x), x # [0, 1], (in order to keep
the common notations, we distinguish between . and order functions ,);
then for 1�p<� and +>&2�p the Banach spaces L p

+ consist of all
measurable functions f : [0, 1] � C with finite norm

& f &p, + :={|
1

0
| f (x) .+ (x)| p dx=

1�p

.

As in the preceding section, for p=� we denote by L�
+ , +�0, the space

of all f : [0, 1] � C for which .+f is continuous on [0, 1] and the
associated supremum norm & f &�, + :=supx # [0, 1] | f (x) .+ (x)| is finite. The
spaces L p

+ are exactly the Gegenbauer or ultrasperical weighted spaces with
weight .+p, to which we restrict ourselves; however, the following will work
in Jacobi weighted spaces as well.

In order to separate the endpoints of the interval [0, 1], we define for a
fixed chosen constant c>0 the seminorms | } |p, +, t , t # (0, 1], on L p

+ by

| f |p, +, t :={{|
1&ct2

ct2
| f (x) .+ (x)| p dx=

1�p

, 1�p<�
(7.1)

sup
x # [ct2, 1&ct2]

| f (x) .+ (x)|, p=�.

For convenience we let | } |p, +, t=0 if c&1�2�2�t�1. Then the seminorms
obviously satisfy the exhaustion property (3.1) and (3.2).

The set of the algebraic polynomials pn (x) :=�n
k=0 ak xk, ak # C, of

degree not exceeding n # N0 is denoted by Pn ; thus the best and best
modified approximation of f # L p

+ are given by

En ( f ; L p
+) := inf

pn # Pn

& f& pn&p, + , E n*( f ; L p
+) := inf

pn # Pn

| f&pn |p, +, 1�n ,

respectively. It is well known that the Gegenbauer polynomials span the
whole space L p

+ , so that the Weierstra? property is satisfied. The following
equivalence condition for the seminorms has been proved by P. G. Nevai
[23] and by Z. Ditzian and V. Totik [13, Theorem 8.4.7], based on
estimates of M. K. Potapov [26].
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Proposition 7.1. For all c>0 exists some constant M=M(c)>0 such
that

&pn&p, +�M | pn | p, +, 2�n , pn # Pn , (7.2)

for all n # N, n>2 - c .

In contrast to the trigonometric case we have to operate with weighted
derivatives. Therefore we define for r # N the weighted Sobolev spaces by
the set of all f # L p

+ which coincide with an (r&1)-times continuously
locally differentiable function g such that .rg(r) belongs to L p

+ . Thus for
f # W p, r

+ we have f (r) # L p
++r , and the associated seminorm is given by

& f &Wp , r
+

:=& f (r)&p, ++r . We need the following Jackson and Bernstein-type
inequalities to ensure that the spaces W p, r

+ are subspaces of order r (or tr).

Proposition 7.2. Let r # N. For all f # W p, r
+ we have

En*( f ; L p
+)�Mn&r & f (r)&p, ++r , n>r, (7.3)

and for all pn # Pn

&p (r)
n &p, ++r�Mnr &pn &p, + , n # N0 . (7.4)

The Jackson inequality (7.3) due to R. A. DeVore and L. R. Scott [11]
for p=1, the general case can be found in P. L. Butzer, S. Jansche
and R. L. Stens [4]. The Bernstein inequality (7.4) was established by
B. A. Khalilova [19].

We now have to identify the spaces above with A-spaces (X+ , S+) in the
sense of Definition 3.1. For the underlying A-spaces we set X+ :=L p

+ and
the subspaces are given by Y+ :=W p, r

+ . It turns out to be useful for
simultaneous approximation to use a discretization for the approximands
St depending on the parameter +. In fact, we set St, + :=P[1�t&+&1]+

, where

x+ :={x,
0,

x�0
x<0,

[x] denoting the integer part of x # R. We use the notation [P[n&+]+
]n # N0

instead of [St, +]t # (0, 1] to prove

Theorem 7.3. The spaces (L p
+ , [P[n&+]+

]n # N0
) endowed with the norm

& }&p, + and the family of seminorms [ | } | p, +, t ; 0<t�1] are A-spaces, and the
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Sobolev spaces W p, r
+ are complete subspaces of order r # N. The associated

(discrete) constants n0=n0 (r) and C*=C*(+) are given by

n0 :=max[r+1, [2 - c ]+1], C* :={
1
2 ,
&+�2,

+�&1
+<&1.

(7.5)

Furthermore, the operators

Dr: W p, r
+ � L p

++r , f [ f (r),

are derivatives of order r # N.

Proof. We have to show that the conditions of Definition 3.1 are
satisfied for the spaces (X+ , [St, +]). As mentioned above, the exhaustion
property (3.1), (3.2), and (3.3) as well as the Weierstra? property (3.6)
are given. Now let 0<t�1�([2 - c ]+++2); then we have t�C*�
2�[1�t&+&1]+ , and on using Proposition 7.1 there follows

&g&p, +�M | g|p, +, 2�[1�t&+&1]+
�M | g|p, +, t�C* ,

which proves (3.8).
Noting that [1�t&+&1]+t1�t&+&1, t<1�(++1), the weak Jackson

inequality (4.2) (for E t*( f, X+)=infgt # St
| f&gt | X+ , t) holds for t # (0,

1�(r+++2)], while the Bernstein inequality (4.5) is valid for t # (0, 1]. It
can be easily shown that the operator f [ .rf (r) is closed, concluding that
the spaces W p, r

+ are subspaces of order r. In particular, the constant t0

of Section 3 can be chosen as

t0=t0 (r, +) :=min { 1

[2 - c ]+++2
,

1
r+++2= .

This gives n0=n0 (r) :=max[r+1, [2 - c ]+1] for our discretization.
Finally, we have

Dr (St, +)=Dr (P[1�t&+&1]+
)=P[1�t&+&1&r]+

=St, ++r , t # (0, 1].

This together with the definition of the seminorm imply that Dr is an
abstract derivative of order r. K

S. M. Niloski@$ [24] has already shown that the accuracy of approxima-
tion by algebraic polynomials increases towards the endpoints of the inter-
val. This has to be taken into account by the definition of a suitable
modulus of smoothness. For f # L p

+ and r # N the main part modulus of
Ditzian and Totik is given by

0r, + ( f, t)#0r, + ( f, t; L p
+) := sup

0<h�t
|2r

h.(x) f (x)|p, +, h , 0<t�1, (7.6)
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where we set c=2r2 in (7.1). If +=0, we simply write 0r ( f, t)=0r, 0 ( f, t);
and we define the ordinary Ditzian�Totik modulus by

|r ( f, t)#|r ( f, t; L p) := sup
0<h�t

&2r
h.(x) f (x)&p , 0<t�1. (7.7)

with the convention that 2r
h.(x) f (x) :=0, if x\r�2h.(x) � [0, 1]. The link

to the abstract theory is the following equivalence between the K-func-
tionals and the moduli of smoothness.

Proposition 7.4. For r # N we have

0r, + ( f, t)tK*( f, tr; L p
+ , W p, r

+ ), 0�t�1, (7.8)

independently of f # L p
+ . Similarly in the case +=0 there holds for f # L p

|r ( f, t)tK( f, tr; L p, W p, r), 0�t�1. (7.9)

The first equivalence (7.8) was proven in P. L. Butzer, S. Jansche and
R. L. Stens [4] by using Theorem 6.2.1. in Z. Ditzian and V. Totik [13].
The second equivalence is given in [13, Theorem 2.1.1]. In the definition
of the main part modulus, the constant c of the seminorms is fixed by
c=2r2. But, on using Lemma 3.2, the constant c>0 in the definition of
the seminorm of the K*-functional can be chosen arbitrarily provided that
the parameter t>0 is sufficiently small. Therefore we can set c=r2�4 in
(7.1), which gives n0=n0 (r) :=r+1 for its discrete analogue.

Now we are in position to apply the abstract theorems to algebraic
approximation. In the non-weighted case +=0 Proposition 4.5 gives
estimates between the ordinary and the main part modulus of Ditzian and
Totik.

Corollary 7.5. If f # L p, then

0r ( f, t)�|r ( f, t)

�M {tr & f &p, ++|
t

0
0r ( f, u)

du
u

+tr |
1

t
u&r&10r ( f, u) du= .

Now we wish to prove Theorem 1.2, namely the direct and inverse
inequalities of best weighted algebraic approximation.

Proof of Theorem 1.2. Let n�r+1 and choose t :=1�(n+++1); then,
noting that nt=1&t(++1)t1, we deduce from Theorem 4.2, Proposi-
tions 7.4, and 2.1

En ( f ; L p
+)�M |

t

0
K*( f, ur; L p

+ , W p, r
+ )

du
u

�M |
1�n

0
0r, + ( f, u)

du
u

.
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This proves the direct estimate. Recalling the definition of our discretization,

inf
g # S1�k , +

& f& g& p, +=E[k&+&1]+
( f ; L p

+).

Inserting this into the inverse Theorem 4.4, we obtain

0r, + ( f, t)�Mtr :
1�k�1�t

kr&1E[k&+&1]+
( f ; L p

+), t # (0, 1].

Assuming that 1�t�[+]+2�0, for k�[+]+2 the monotonicity of the
best approximation implies E[k&+&1]+

( f ; L p
+)�Ek&[+]&2 ( f ; L p

+), yielding
with j=k&[+]&2,

0r, + ( f, t)�Mtr :
0� j�1�t&[+]&2

( j+1)r&1 Ej ( f ; L p
+)

�Mtr :
0� j�1�t

( j+1)r&1 E j ( f ; L p
+).

Thus the inverse estimate of Theorem 1.2 is proved also. Concerning the
case 1�t<[+]+2, we use the fact that 0r, + ( f, t)=0r, + ( f, t+ p0) for all
p0 # P0 to deduce 0r, + ( f, t)�ME0 ( f ; L p

+), 1�t<[+]+2, completing the
proof. K

On using Theorem 5.2 instead of Theorems 4.2 and 4.4, the direct and
inverse estimates concerning simultaneous approximation can be proved
along the same lines.

Corollary 7.6. Let r, l # N satisfy l<r. If for f # L p
+ the integral

|
1

0
u&l&10r, + ( f, u) du

is finite, then we have f (l ) # L p
++l , and

En ( f (l ); L p
++l)�M |

1�n

0
u&l&10r, + ( f, u)

du
u

, n�r+1.

Conversely, for all f # W p, l
+ , t # (0, 1],

0r, + ( f, t)�Mtr {& f &p, ++ :
0�k�1�t

(k+1)r&l&1 Ek ( f (l ); L p
++l)=, t # (0, 1].

In the case +=0 the estimates remain valid, if 0r is replaced by |r .
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An application of Theorem 5.4 yields the algebraic counterparts of the de
la Valle� e Poussin-Stec� kin theorems.

Corollary 7.7. Let l, r # N. If for f # L p
+ the series

:
�

k=0

k l&1E1�k ( f ; L p
+)

is convergent, then we have f # W p, l
+ , satisfying for t # (0, 1]

0r, ++l ( f (l ), t)�Mtr :
0�k�1�t

kr+l&1Ek ( f ; L p
+)+M :

k�1�t

kl&1Ek ( f ; L p
+).

For all f # W p, l
+ and n�max[r, l]+1 we have

En ( f ; L p
+)�Mn&l |

1�n

0
0r, ++l ( f (l ), u)

du
u

.

Inequalities of Marchaud type and reduction theorems are collected in
the following

Corollary 7.8. Let f # L p
+ , l, r, s # N, and t # (0, 1].

(a) We have

0r, + ( f, t)�M {tr & f &p, ++|
t

0
0s, + ( f, u)

du
u

+tr |
1

t
u&r&10s, + ( f, u) du= ,

and in the case +=0,

|r ( f, t)�Mtr {& f &p+|
1

t
u&r&1|s ( f, u) du= .

In particular, if s<r, then

|r ( f, t)�M[tr & f &p+|s ( f, t)].

(b) If for l<r the integral

|
1

0
u&l&10r, + ( f, u) du
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is convergent, then f (l ) # L p
++l , and

0s, ++l ( f (l ), t)�M {ts & f &p, ++|
t

0
u&l&10r, + ( f, u) du

+ts |
1

t
u&s&l&10r, + ( f, u) du= .

(c) If l<r, then for all f # W p, l
+ ,

0r, + ( f, t)�M {tr & f &p, ++tl |
t

0
0s, ++l ( f (l ), u)

du
u

+tr |
1

t
ul&r&10s, ++l ( f (l ), u) du= .

Proof. Using the equivalences between the K-functionals and the
moduli of smoothness, (a) follows from Theorem 5.5. The estimates in (b)
and (c) are immediate consequences of Theorem 5.3, if the spaces X, X� are
identified with L p

+ and L p
++r , respectively, noting that D l: W p, l

+ � L p
++l

forms an abstract derivative of order l in the sense of Definition 5.1. K

Finally, the assertions of the preceding corollaries can be collected in
terms of O-equivalences.

Corollary 7.9. Let l, r, s # N, l<r, s and , # 8 such that trO,(t)O t l

and ts+lO,(t). Then the following four assertions are equivalent for f # L p
+ :

(i) En ( f, L p
+)=O(,(n&1)), n � �;

(ii) 0r, + ( f, t)=O(,(t)), t � 0+;

(iii) f (l ) # L p
++l and En ( f (l ), L p

++l)=O(nl,(n&1)), n � �;

(iv) f (l ) # L p
++l and 0s, ++l ( f (l ), t)=O(t&l,(t)), t � 0+.

In particular we can choose

,(t)=t: |log t|;, t # (0, 1),

for l<:<r, :<s+l, and ; # R.
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